

(Autonomous Institution – UGC, Govt. of India)

(Affiliated to JNTU, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – 'A' Grade, ISO 9001:2008 Certified) Maisammaguda, Dhulapally, Secunderabad – 500100.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

III B. TECH II SEMESTER

QUESTION BANK (2024 – 25)

R22-REGULATION

(Autonomous Institution – UGC, Govt. of India)

III B.Tech II Semester

Digital Signal Processing

(ECE)

Ti	ne:	3 hours Max. Mar	·ks: 60			
No	te:	This question paper contains two parts A and B				
		Part A is compulsory which carriers 10 marks and Answer all questions.				
		Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIV	VE Questions,			
		Choosing ONE Question from each SECTION and each Question carries	10 marks.			
1.		$\mathbf{PART} - \mathbf{A} \tag{10Ma}$	rks)			
	(a)	Define linear shift invariant system.	(1M)			
	(b)	Check the system $y(x) = x(n/2)$ is stable or not.	(1M)			
	(c)	State the difference between DITFFT and DIFFFT algorithms.	(1M)			
	(d)	Determine the IDFT of $X(k) = \{ 3, (2+j), 1, (2-j) \}.$	(1M)			
	(e)	Using Bilinear transformation, find H (z) from H (s) = $2 / [(S+1) (S-1)]$ with T = 1				
	(f)	sec. (IM)	<i>.</i> •			
	(I)	Determine the order of the LPF for Butterworth approximate, with 3 dB attenue at 500 Hz and an attenuation of 40 dB at 1000 Hz	ation			
	(a)	at 500 HZ and an attenuation of 40 dB at 1000 HZ. (1) What are finite word length effects? (1)	1) 1)			
	(g) (h)	What are the conditions for a FIR system to have linear phase? (1)	1) 1)			
	(II) (i)	What are the applications of Digital signal processor? (1M	(1) [)			
	(i)	What is the advantage of very large instruction word architecture in Digital sig	nal			
	J,	Processor. (11	M)			
		PART - R (50 Marks)				
		<u>SECTION – I</u>				
2.		Check for the linearity and time invariant of the following systems (i) $y(n) = x(n) x(n-2)$ (ii) $y(n) = a^n u(n)$	(10M)			
		$(\mathbf{n}) \mathbf{y}(\mathbf{n}) = \mathbf{a} \mathbf{u} (\mathbf{n}) $				
3.		Determine and sketch the magnitude and Phase response of the given system				
		y(n) = 1/3 [x(n) + x(n-1) + x(n-2)]	(10M)			
		<u>SECTION – II</u>				
4.		Determine the IFFT using DIF method for $X(K) = \{1, 1+j, -j2, 1, 0, j2, 1+j\}$				
			(10M)			
_		(OR)				
5.		Find the DFT of the Sequence $x(n)$ defined by	(10M)			
		$X(\Pi) = 1 \text{ IOF } 2 \le \Pi \le 0$ = 0 for n = 0, 1 and 7				

Use DIF algorithm. Give all intermediate results.

SECTION – III

6. Design a Chebyshev IIR digital low pass filter to satisfy the constraints using bilinear transformation method and assuming T = 1s.

$$\begin{array}{c|c} 0.707 \leq | H(\omega) | \leq 1 ; & 0 \leq \omega \leq 0.2\pi \\ | H(\omega) | \leq 0.1 ; & 0.5 \pi \leq \omega \leq \pi \end{array}$$
(10M)

(OR)

7. Design a Butterworth IIR low pass filter with the following specifications: pass band Ripple $\alpha_p = 1$ dB, stop band attenuation $\alpha_s = 40$ dB, pass band edge frequency is 2 KHz, stop band edge frequency 10 KHz, Sampling frequency is 25 KHz. Use the bilinear transformation technique. (10M)

SECTION – IV

8. Design a FIR high pass filter of length 11 to approximate the ideal filter with a pass band cut off frequency at 1 KHz. Use triangular window. (10M)

(OR)

9. Differentiate between IIR and FIR filters. Discuss the various steps in designing FIR filter. (10M)

$\underline{SECTION - V}$

10.	a. Explain the spectrum of down sampling.			
	b. What are the applications of multi rate digital signal processing?	(5M)		

(OR)

11. Write short notes on
(i) Methods to prevent overflow.
(ii) Up sampling, Interpolation and the concept of decimation.(5M)

(Autonomous Institution – UGC, Govt. of India) III B.Tech II Semester Digital Signal Processing (ECE)

Time: 3 hours

Max. Marks: 60

Note: This question paper contains two parts A and B

Part A is compulsory which carriers 10 and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks. ****

PART – A (10 Marks)

1.

- (a) Define causal system and also linear system. (1M)
- (b) Write the Z-transform of the sequence X(n) = [3,8,2,1,-1,4]. (1M)
- (c) Find the IDFT of $X(K) = \{1,1,1,1\}$. (1M)
- (d) What are the differences and similarities between DIF and DIT algorithms? (1M)
- (e) What are the properties of Bilinear Transformations? (1M)
- (f) Why impulse invariant method is not preferred in the design of IIR filter other than the low pass filter? (1M)
- (g) Write the important features of IIR filters. (1M)
- (h) Mention 4 advantages of FIR filter. (1M)
- (i) State sampling theorem. (1M)
- (j) What is decimation? When it is performed? (1M)

PART – B

(50 Marks)

<u>SECTION – I</u>

2.	a.	Check for the stability and Causalit	ty of the following systems.	(5M)
		(i) h(n) = x (n-1)	(ii) $h(n) = n^2 x (-n)$	

b. Determine and sketch the magnitude and phase response of the given system (5M) y(n) = 1/2 [x(n) + x(n-1)]

(**OR**)

3. Describe the digital signal processing system. (**10M**)

SECTION – II

- 4. Determine the IFFT using DIT method for $X(k) = \{4,-6, 8, -10, 12, -3, 2, -1\}$ (10M) (OR)
- 5. Find the 8-point DFT of the following Sequences by using DIT FFT algorithm: (10M) $x(n) = \{1,1,1,1,0,0,0,0\}$

<u>SECTION – III</u>

6. Design a digital low pass IIR Chebysher filter for pass band cut off frequency of 1500 Hz, stop band cut off frequency of 7500 Hz, Attenuation in pass band 3 dB and attenuation in stop band 15dB. Assume suitable sampling frequency? Use Bilinear transformation. (10M)

7.	Design a Butterworth low pass filter for the specif	ications given below:
	i) -3dB cut off frequency of 100 rad / sec.	
	ii) -25 dB cut off frequency of 250 rad / sec.	(2*5=10)
	<u>SECTION – I</u>	<u>V</u>
8.	Determine the order of low pass digital FIR filter	using an appropriate window function for
	the following specifications:	
	Pass band cut off frequency $fp = 150Hz$, Stop band fr	equency $fs = 250$ Hz. Pass band ripple Ap =
	0.1 dB Stop band attenuation $As = 40$ dB Sampling from the second state of the second	equency $F = 100$ Hz.
	Also give the design procedure for the above problem	. (10M)
	(OR)	
9	(i) Compare IIR and FIR filters	(6M)
	(ii) What is an aliasing effect	(4M)
	SECTION -	<u>- V</u>
	10. a. Explain the interpolation process. How it is diff	erent from Decimation? (5M)
	b. How do you change the sampling rate by arbit	ary factor? (5M)
	(OR)	-
	11. Write short notes on	
	(i) Explain the application of multirate signal process	ing (6M)

(OR)

(i) Explain the application of multirate signal processing
(ii) Comparison between DSP and other microprocessor architectures. (**4M**)

(Autonomous Institution – UGC, Govt. of India)

III B.Tech II Semester

Digital Signal Processing

(ECE)

					1 1
					1 1
					1 1
					1 1
					1 1

Time: 3 hours

Max. Marks: 60

Note: This question paper contains two parts A and B

Part A is compulsory which carriers 10 marks and Answer all questions.Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

PART-A (10 Marks)

1). a	State the conditions for a system to be stable and causal.	[1M]
b	Check whether or not the system $y(n) = T[x(n)] = x(-n)$ is time-invariant.	[1M]
с	Find the DFT if the sequence $x(n) = \begin{bmatrix} 2 & 0 & -1 & 1 \end{bmatrix}$	[1M]
d	Why FFT is preferred to DFT?	[1M]
e	Why impulse invariant method is not preferred in the design of IIR filter other than low pass filter?	[1M]
f	What are the properties of bilinear transformation?	[1M]
g	Distinguish between FIR and IIR filters.	[1M]
h	Give the expression for the frequency response of Hamming window and Hanning window	[1M]
i	Explain the meaning of Interpolation	[1M]
i	Give 2 applications of Multi Rate Signal Processing	[1N]
J	PART-B (50 MARKS)	[=:,=]
	SECTION-I	
2. a.	Check for the stability and causality of the following systems: (i) $H(n) = x(n^2)$ (ii) $h(n) = x(-n)$	[10M]
b.	Find the system's response to the input $x(n) = \{1/2\}^n$.u(n) with zero initial conditions	
	$y(n) = \frac{3}{4}y(n-1) - \frac{1}{8}y(n-2) + x(n) - x(n-1)$	
	OR	
3. a.	Verify the system $y(n) = 2 / [x(n) + 3]$ for its linearity time invariance, causality and stability.	[10M]
b.	Obtain the frequency response of the system;	
	Y(n) = -2y(n-1) + 3y(n-2) + 4x(n) and plot.	
	SECTION-II	
4	Determine IFFT using DIT method for $X(k) = \{4, -6, 8, -10, 12, -3, 2, -1\}$	[10M]
	OR	
5	Find the 8 point DFT of the following sequences using DIT FFT:	[10M]
	(i) $x(n) = \{1, 1, 1, 1, 0, 0, 0, 0\}$ (ii) $x(n) = \{1, 2, 1, 2\}$	

Page 1 of 2

SECTION-III

6 Design a Butterworth filter satisfying the constraints using bilinear transformation: [10M] $0.75 \le |H(e^{j\omega})| \le 1$ $0 \le \omega \le \pi / 2$ $|H(e^{j\omega})| \le 0.2$ $3\pi / 4 \le \omega \le \pi$.

OR

7 Design a Butterworth IIR low pass filter with the following specifications: Pass [10M] band ripple $\alpha_p = 1$ dB, stop band attenuation $\alpha_s = 40$ dB, pass band edge frequency is 2000Hz, stop band edge frequency is 10000Hz and sampling frequency is 25000Hz, using bilinear transformation technique.

SECTION-IV

8 The designed response of a certain FIR filter is given by: $H_d(f) = \{ 1 \ 0 \le f \le 1 \ KHz \ \{ 0 \ f > 1 \ KHz. \}$ [10M]

Let the sampling rate be $f_s = 10$ KHz. Impulse response is of 1 milli-sec duration. Use Hamming window and compute the impulse response of FIR filter.

OR

9 Design an ideal LPF, whose response is $H_d(e^{jw}) = e^{j3w}$ $0 \le \omega \le \pi / 3$ = 0 otherwise. Using a rectangular window, N=5

SECTION-V

- 10 a. Derive and draw the spectrum of a down sampler used in decimator. [5M]
 b. State and prove identities used in Multirate signal processing related to decimator. [5M]
 11 a. What are the advantages of Multi-rate signal processing? [5M]
 - b. What are the two basic operations in Multi-rate signal processing? [5M]

[10M]

(Autonomous Institution – UGC, Govt. of India)

III B.Tech II Semester

Digital Signal Processing(ECE)

Time: 3 hours

Max. Marks: 60

Note: This question paper contains two parts A and B

Part A is compulsory which carriers 10 marks and Answer all questions.
Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

PART-A (10 Marks)

1). a	What are advantages and disadvantages of DSP?	[1M]
b	Explain about linearity and time invariance of a system.	[1M]
с	What are differences between DIT FFT and DIF FFT	[1M]
d	Find the DFT of $x[n] = \{1,1,0,0\}$.	[1M]
e	What are the disadvantages of impulse invariant method.	[1M]
f	What are the important features of IIR filters?	[1M]
g	Write the advantages of FIR filters.	[1M]
h	Define Linear phase system.	[1M]
i	What is multirate signal processing?	[1M]
i	What is interpolation?	[1M]
Ũ	PART-B (50 MARKS)	
	SECTION-I	
2	Check the linearity and time invariance of the following system	[10M]
	$Y(n) = Ax^{2}(n) + B$ ii) $y(n) = n x(2n)$	
	OR	
3	For the given system $y(n)=x(n)-2x(n-1) +x(n-2)$, determine the magnitude and	[10M]
	phase response.	
	SECTION-II	
4	Find the DFT of a sequence $x[n] = \{1,1,1,1,1,0,0,0\}$ using DIT FFT algorithm OR	[10M]
5	Compute 8-point DFT of the sequence $x[n]=1; 0 \le n \le 7$	[10M]
	=0 otherwise by using DIF algorithm.	
	SECTION-III	
6	Design a Chebyshev filter with $\alpha_p=2.5$ dB, $\Omega_p=20$ rad/sec, $\alpha_s=30$ dB, $\Omega_s=50$ rad/sec.	[10M]
	OR	
7	Using the Bilinear transform, design a high pass filter monotonic in pass band with cut off frequency of 1000Hz and down 10dB at 350Hz. The sampling	[10M]
	frequency is 5000Hz.	

SECTION-IV

8	Compare IIR and FIR filters and discuss the various steps in designing FIR filter OR	[10M]
9	Design an ideal low pass filter with frequency response	[10M]
	$\begin{array}{l} H_d(e^{jw}) = 1 \mbox{ for } -\pi/2 \leq w \leq \pi/2 \\ = 0 \mbox{ for } \pi/2 \leq w \leq \pi \mbox{ , find the values of } h(n) \mbox{ for } N=11,\mbox{find } H(z) \\ \hline \mbox{ SECTION-V} \end{array}$	
10	a) Explain the spectrum of down sampling.	[5M]
	b) Write the applications of multi rate signal processing.	[5M]
	OR	
11	a) Explain about anti-aliasing filter.	[5M]
	b) Explain about sampling rate conversion ******	[5M]